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Abstract 

 
Theoretical, numerical and computational modelling of the interdiffusion analysis is the 

major part of the diffusion and diffusion-related fields of research. In this study, general 

approaches for the analysis of the interdiffusion composition profiles as well as 

interdiffusion coefficients are investigated for solid metallic alloy systems where the 

number of atomic components 𝑛 ≥ 3. The main focusing of the present dissertation is to 

analyse the interdiffusion phenomenon for ternary, quaternary and quinary (high entropy 

alloys) metallic systems making use of numerically and analytically for the closed form 

solutions. For the ternary and quaternary metallic system composition independent 

interdiffusion coefficients are used mainly for the detailed study of diffusion behaviour. 

In quinary metallic system composition dependent (as well as composition independent) 

interdiffusion matrices are used for the detailed study of CoCrFeMnNi HEAs. MATLAB 

programming language is used as the main tool for investigating the interdiffusion 

phenomenon in the different metallic system. Finally, the results obtained are compared 

with the available experimental data. 

 

 

 

 

 

 
 

 
 
 
 


